Simultaneous measurement of thickness and drying process of paint film by terahertz electromagnetic pulse

T. Yasuda, T. Yasui, T.Araki, and T. Iwata*

Grad. Sch. of Engg. Sci., Osaka Univ.

Faculty of Engg., Univ. of Tokushima*

Conventional methods can not meet all the requirements!

In-process monitoring of paint film using THz electromagnetic pulse

Quality control of painting film

Requirements		Conventional method (contact-type)	THz
Painting thickness	Non-contact, Remote	×	
	Dried / Wet	Δ (only dried)	
	Single- / Multi-layer	Δ (only single)	
	Thickness distribution	×	
	Metal / Non-metal substrate	Δ (only metal)	?
	Precision = ±0.5 μ m	0	
Painting quality	Paint-off	×	
	Drying process	×	A

Principle

d can be determined by ⊿t

Experimental setup

(1) Painting thickness measurement

Relationship between painting thickness and optical thickness

white enamel (alkyd resin, pigment, paint thinner)
black acryl (acryl resin, pigment, nitrate, paint thinner)

Precision: 5 μ m

Resolution: 80 μ m

Insufficient!

Group refractive index 1

White enamel: 2.59

Black acryl: 1.66

Improvement of thickness resolution

∼Separation of convoluted echo pulse based on two-parameter fitting ~

Measurement of thin painting film

Sample: black acryl (thickness=17µm)

Green: fitting signal

Red: measurement signal

Blue: Residual between measurement signal and fitting signal

Resolution is improved

(2) Distribution measurement of painting thickness

Thickness distribution of multi-layer painting

Detection of paint-off area

(3) Monitoring of dry process

Temporal change of wet paint film

Dry-state monitoring based on delay time of pulse echo

10

12

Summary

Requirements		Conventional method (contact-type)	THz
Painting thickness	Non-contact, remote	×	0
	Dried / wet	Δ (only dried)	0
	Single- / Multi-layer	Δ (only single)	0
	Painting distribution	×	0
	Metal / non-metal substrate	Δ (only metal)	0
	Precision = 0.5 μ m	0	Δ
Painting quality	Paint-off	×	0
	Drying process	×	<u> </u>

Acknowledgements

NEDO and Mazda Motor Corporation, Japan