

THz frequency synthesizer based on dual optical comb

T. Yasui^{1, 2)}, H. Inaba³⁾, K. Minoshima³⁾, and T. Araki¹⁾

Osaka Univ., ²⁾ Univ. Tokushima, and ³⁾ AIST, Japan

Optical Comb Symposium @ Tsukuba (2011.9.26)

Background

Accurate, stable, tunable CW-THz source (THz clock and synthesizer)

(freq. metrology, high-resolution spectroscopy, local oscillator for heterodyne receiver, carrier wave for wireless communications, etc)

Ref) Laser&Photon. Rev. 3, 123 (2009).

Photomixing of two stabilized CW lasers

Optical frequency comb is attractive frequency reference to control two CW lasers for photomixing

Conventional study

Photomxing of two CW lasers phase-locked to single optical comb

Common-mode change of CWL1 and CWL2 cancels most of optical frequency change!

Optical Frequency Synthesizer (OFS)

Optical frequency comb

$$f_m = m \cdot f_{rep} + f_{ceo}$$

f_{rep} and f_{ceo} are
phase-locked

Precise freq. ruler in optical region

Phase-locking single-mode CW laser to optical comb

$$f_{ofs} = m \cdot f_{rep} + f_{ceo} + f_{beat}$$

Phase-locked to microwave freq. standard

Determined at uncertainty of frequency standard

Performance of OFS

Stability of f_{opt}

Tuning characteritic

THz synthesizer based on photomixing of two independent OFSs

ref) Opt. Express 16, 13052 (2008); Opt. Express 17, 17034 (2009)

Spectrum of CW-THz wave measured by THz-comb-referenced spectrum analyzer

 $f_{THz} = 92 \text{ GHz}$

 $f_{THz} = 140 \text{ GHz}$

OFS1: Δf_{ofs1} =280 kHz OFS2: Δf_{ofs2} =600 kHz

Assignment of absolute frequency to CW-THz spectrum around 140 GHz

Parameters of OFSs

	f _{ceo} (Hz)	m	f _{rep} (Hz)	f _{beat} (Hz)	f _{ofs} (Hz)
OFS1	10,683,000	3,889,264	49,985,129.0	-21,384,000	194,405,352,054,056
OFS2	10,683,000	3,811,224	50,971,884.1	69,960,000	194,265,348,650,138

Center frequency of CW-THz wave (f_{THz})

140,003,403,918 Hz (uncertainty = 10^{-12})

Incremental tuning of CW-THz wave around 133 GHz by scanning f_{rep2} at 0.2 Hz intervals

Consecutive tuning of f_{THz} over range of 1GHz around 131.71GHz

 Δf_{THz} can achieve 1.7 THz when Δf_{rep2} = 450 kHz

Summary

Continuously tunable THz synthesizer traceable to hydrogen maser

- (1) Frequency uncertainty of 10⁻¹²
- (2) Linewidth = 600 kHz
- (3) Discrete tuning = 50 GHz, limited by available BW of UTC-PD
- (4) Continuous tuning = 1.26 GHz
- (5) Maximum tuning range = 0.99 THz if broadband photomixer is used