# Collagen-sensitive microscopy

Takeshi Yasui

Inst. Tech. Sci., Univ. Tokushima, Japan

Grad. Sch. Engg. Sci., Osaka Univ., Japan

August 2, 2012

## To search "collagen" on the internet

Collagen drinks

Collagen supplements

Collagen soup



Collagen cream







Collagen injections



- Important in body
- Huge market in world (¥55 B in Japan@ 2011)
- Questionable ?

## What is collagen?



Collagen (extracellular matrix)

Collagen plays a role of "glue" to bind cells together or makes partitions between cells to put them in the right and well ordered position



Collagen plays an active role in biding and supporting cells!

- Collagen makes up every part of body and supports, binds, detaches cells
- Collagen is a scaffold for cells. Cells divide and proliferate there

Collagen makes significant influence on vital activity and aging

## What is collagen?



What happens as collagen production decreases?

- Skin loses firmness and elasticity, and sags and wrinkles appears
- Bone density decreases causing osteoporosis
- The gums deteriorate and periodontal disease occurs
- Blood vessels lose elasticity causing hypertension
- Nails become liable to split or chip

# What is collagen?

- Most abundant fibrous protein; principal component of ECM
- Produced and remodeled by fibroblast
- Scaffold to maintain tissue structure
- Control production, specialization, and morphogenesis of cells
- Play an important role as a scaffold for cells in engineering tissues

#### Hierarchical structure of collagen





Collagen

Fiber
1 μm
0.5 - 3 μm
10- 300 nm

Tropocollagen
Triple-helix structure

**Fibroblast** 

# Collagen in skin



- Collagen comprises 70% of dermis
- Collagen determines
   mechanical and
   functional characteristics
   of skin
- Collagen draws attention in the field of skin cosmetics and anti-aging dermatology

Collagen content = 70wt%

## Conventional method to observe collagen

Staining method

Electron microscopy



Selective visualization Invasive (skin biopsy)



Highly spatial resolution Invasive (skin biopsy)

Difficult to visualize distribution of collagen in living tissue "in vivo"

## Optical probe methods

- Simple and rapid
- Non-contact and non-invasive
- Directly applied to the skin



#### Laser confocal microscopy



in vivo measurementNo selectivity to collagen

#### Collagen molecule induced

#### Second-Harmonic-Generation (SHG) light

- Nonlinear optical interaction with ultrashort pulse light
- Specifically generated from collagen molecule in tissue components
- Sensitive to collagen structure and orientation
   ref) T. Yasui et al, *J. Biomed. Opt.*, Vol. 9, pp. 256-264 (2004).
   T. Yasui et al, *Appl. Opt.*, Vol. 43, pp. 2861-2867 (2004).

## What is SHG light?



## What is femtosecond (10<sup>-15</sup> sec)?



#### CW (continuous-wave) light vs. fs pulse light

CW (continuous-wave) laser



fs pulse laser

Average power is equal to each other.



Electric filed of light is temporally localized within region of fs order.



Optical nonlinear effect can be easily induced without thermal damage!

## Various femtosecond lasers in our lab

"Lab-made" femtosecond Ti:Sapphire laser at wavelength of 800 nm



"Compact" femtosecond fiber laser at wavelength of 1550 nm



"Amplified" femtosecond Ti:Sapphire laser at wavelength of 800 nm



"Penetrative" femtosecond Cr:Forsterite laser at wavelength of 1250 nm



Good for biomed. opt.

#### Structure of tissue collagen



Enhanced SHG light due to constructive interference

# Collagen-sensitive SHG microscopy for dermatological applications Femtosecond laser light



## Experimental setup



SHG imaging of sliced specimen

**Uniform** orientation of thick collagen



Image size 400µm\*400µm

**Dense** distribution of thin collagen fiber

Tail tend

only collagen fiber in

tissue is visualized!

structure of thick collagen fiber

Lower reticular dermis



Upper reticular dermis

## Large-area SHG imaging

(Image area: 2.4 mm×2.4 mm)



Obtained by arranging 16 SHG images (600µm\*600µm) as a matrix of four rows and four lines. Image acquisition time:1min

#### Optically-sectioning, depth-resolved SHG imaging

Sample: frozen porcine skin

Area: 400 µm×400 µm Pixel number: 256×256

Acquisition time: 10 sec/ image

laser power = 10mW







Dense distribution of fine collagen fiber

Thickly growing collagen fiber

. 50 μm







130 μm 170 Capillaries

#### in vivo depth-resolved SHG imaging of human forearm



# in vivo large-area SHG imaging of hypertrophic scar in human forearm



Abnormal structure of collagen fiber caused by imperfect healing process of injury

000µm

depth

## Summary



Confocal image



Tissues structure

SHG image



Collagen density

 $\alpha$  image



Collagen orientation



in vivo visualization of "living" collagen

#### **Anti-aging**

Photoaging, intrinsic aging Wrinkle formation

#### **Burn assessment**

Burn depth, scar formation, skin grafting

#### **Wound healing**

Dynamics of collagen during healing process

#### Tissue engineering

Quality control of collagen in engineered tissues